Markov-switching model selection using Kullback–Leibler divergence

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Markov-switching model selection using Kullback–Leibler divergence

In Markov-switching regression models, we use Kullback–Leibler (KL) divergence between the true and candidate models to select the number of states and variables simultaneously. Specifically, we derive a new information criterion, Markov switching criterion (MSC), which is an estimate of KL divergence. MSC imposes an appropriate penalty to mitigate the overretention of states in the Markov chai...

متن کامل

Estimating Markov Switching model using Gibbs sampling

The objective of this paper is to provide readers with the program to estimate a Markov switching model with time varying transition probability(Filardo, 1994) by using a statistical computing software R. Although many of the previous studies estimating the model have conducted the estimation by the maximum likelihood estimation, this paper utilizes Gibbs sampling method. Using Gibbs sampling m...

متن کامل

Bayesian Portfolio Selection in a Markov Switching Gaussian Mixture Model

Departure from normality poses implementation barriers to the Markowitz mean-variance portfolio selection. When assets are affected by common and idiosyncratic shocks, the distribution of asset returns may exhibit Markov switching regimes and have a Gaussian mixture distribution conditional on each regime. The model is estimated in a Bayesian framework using the Gibbs sampler. An application to...

متن کامل

Autocovariance Structure of Markov Regime Switching Models and Model Selection

We show that the covariance function of a second-order stationary vector Markov regime switching time series has a vector ARMA(p; q) representation, where upper bounds for p and q are elementary functions of the number of regimes. These bounds apply to vector Markov regime switching processes with both mean-variance and autoregressive switching. This result yields an easily computed method for ...

متن کامل

Forecasting Value-at-Risk Using the Markov-Switching ARCH Model

This paper analyzes the application of the Markov-switching ARCH model (Hamilton and Susmel, 1994) in improving value-at-risk (VaR) forecast. By considering a mixture of normal distributions with varying variances over different time and regimes, we find that the “spurious high persistence” found in the GARCH model is adjusted. Under relative performance and hypothesis-testing evaluations, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Econometrics

سال: 2006

ISSN: 0304-4076

DOI: 10.1016/j.jeconom.2005.07.005